在Python编程的世界里,推导式(Comprehensions)以其简洁、高效的特性,成为编写优雅代码的不二法门。列表推导(List Comprehensions)、字典推导(Dictionary Comprehensions)和集合推导(Set Comprehensions)不仅能够显著提升代码的可读性,还能在处理数据时大大增强性能。

列表推导

列表推导式是Python中构造列表最直观且高效的方式。它允许你在一行代码中完成循环、条件判断以及新元素的生成。

基本示例

1
2
# 平方数
squares = [x**2 for x in range(1, 6)]print(squares) # 输出:[1, 4, 9, 16, 25]

条件过滤

1
2
# 筛选偶数
even_numbers = [x for x in range(10) if x % 2 == 0]print(even_numbers) # 输出:[0, 2, 4, 6, 8]

嵌套循环

1
matrix = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]transposed = [[row[i] for row in matrix] for i in range(len(matrix[0]))]print(transposed)  # 输出:[[1, 4, 7], [2, 5, 8], [3, 6, 9]]

字典推导

字典推导允许你快速创建字典,其中每个键值对都是根据表达式计算得出的

基本示例

1
2
# 字母计数
word = "comprehension"char_count = {char: word.count(char) for char in set(word)}print(char_count) # 输出:{'c': 1, 'o': 2, 'm': 1, 'p': 1, 'r': 2, 'e': 2, 'h': 1, 'n': 1, 's': 1, 'i': 1, 't': 1}

条件过滤

1
2
# 年龄分类
people = [{"name": "Alice", "age": 30}, {"name": "Bob", "age": 25}, {"name": "Charlie", "age": 35}]age_groups = {person["name"]: "adult" if person["age"] >= 18 else "minor" for person in people}print(age_groups) # 输出:{'Alice': 'adult', 'Bob': 'adult', 'Charlie': 'adult'}

集合推导

集合推导提供了创建集合的便捷方式,尤其擅长于去重和执行集合间的操作。

去重平方

1
numbers = [1, 2, 2, 3, 4, 4, 5]unique_squares = {x**2 for x in numbers}print(unique_squares)  # 输出:{1, 4, 9, 16, 25}

交集平方

1
set1 = {1, 2, 3, 4}set2 = {3, 4, 5, 6}common_squares = {x**2 for x in set1 & set2}print(common_squares)  # 输出:{9, 16}

高级技巧:嵌套与链式推导

推导式可以相互嵌套,甚至与条件表达式相结合,实现复杂的逻辑。

矩阵乘法

1
matrix_a = [[1, 2], [3, 4]]matrix_b = [[5, 6], [7, 8]]result = [[sum(a*b for a, b in zip(row_a, col_b)) for col_b in zip(*matrix_b)] for row_a in matrix_a]print(result)  # 输出:[[19, 22], [43, 50]]

链式推导

复杂转换

1
data = [("apple", 2), ("banana", 4), ("cherry", 1)]fruits_sorted_by_count = sorted(    (fruit for fruit, count in data),    key=lambda pair: pair[1],    reverse=True)print(fruits_sorted_by_count)  # 输出:['banana', 'apple', 'cherry']